Выпуск 15-04

РАДИОСЕТЬ УПРАВЛЕНИЯ И СБОРА ДАННЫХ ДЛЯ ЖЕЛЕЗНОДОРОЖНЫХ ПРИЛОЖЕНИЙ

В данной статье представлена краткая информация о возможностях узкополосных технологических радиосетей управления и сбора данных в интересах организации перспективной командной радиосети обмена данными между стационарными и подвижными объектами, входящими в структуру железных дорог. Описаны некоторые особенности использования вышеуказанных технических средств, применительно к созданию автоматизированной системы управления движением с использованием современных методов и алгоритмов.

Изложенные в статье общие принципы организации технологических радиосетей могут успешно применяться на распределенных объектах в других отраслях промышленности и транспорта.

Статья предназначена для руководителей и технических специалистов, связанных с организацией работы железнодорожного транспорта, управления напольным оборудованием, удаленного сбора производственной телеметрии, а также компаний-интеграторов, разрабатывающих и внедряющих автоматизированные системы управления технологическими процессами (АСУ ТП) в промышленности и на транспорте.

Мы благодарим руководство компании «АВП-технология» (http://www.avpt.ru), лидера в отрасли автоматизации процессов управления подвижным составом железных дорог, за возможность публикации настоящих материалов.

6. Перспективные радиотехнические средства для систем управления движением на железнодорожном транспорте

Основная часть перспективных разработок специалистов европейских государств в части управления железнодорожным транспортом связана с использованием системы связи LTE-R, которая должна заменить действующие системы GSM-R в период 2025-2030 годы.

Сравнительные технические характеристики оборудования связи стандартов GSM-R и LTE-R представлено ниже.

Таблица 7. Сравнительные технические характеристики оборудования связи стандартов GSM-R и LTE-R.

Характеристика	GSM-R	LTE-R
Рабочая частота	876–880, 921–925 МГц	450 и 800 МГц, 1,4 и 1,8 ГГц
Пропускная способность радиоканала	200 кГц	1,4–20 МГц
Максимальная скорость обмена данными	172 кбит/с	10/50 Мбит/с
Поддержка IP-протокола	Нет	Да
Вид модуляции, метод доступа к каналу связи	GMSK, TDMA	QPSK, 16-QAM,
		64-QAM (OFDM, SCFDMA)
Пиковая спектральная эффективность	0,33 бит/с/Гц	2,55 бит/с/Гц
Максимальный радиус действия одной соты	8 км	4–12 км
Передача данных	Требуется соединение по голосовому каналу	Коммутация пакетов, трансляция данных по протоколу UDP ¹
Передача данных в пакетном режиме	Нет (только	Ограниченные
	последовательный поток данных)	возможности (по протоколу UDP)
Разнесенный прием (MIMO) ²	Нет	2 × 2

¹ **UDP** (англ. *User Datagram Protocol* – протокол пользовательских датаграмм) – один из ключевых элементов TCP/IP, набора сетевых протоколов для Интернета. С UDP компьютерные приложения могут посылать сообщения (в данном случае называемые датаграммами) другим хостам по IP-сети без необходимости предварительного сообщения для установки специальных каналов передачи или путей данных. Протокол был разработан Дэвидом П. Ридом в 1980 году и официально определен в RFC 768. Протокол не предусматривает подтверждение абонентами полученных сообщений.

Надежность эстафетной передачи пользователей между соседними базовыми станциями («хэндовер»)	≥ 99,5%	≥ 99,9%
Вариант реализации «хэндовера»	Техническим средствами	Программными средствами (без потери данных)
Допустимая максимальная скорость движения поезда	500 км/ч	500 км/ч
Состояние	Серийное производство	Разработка
Позиционирование на рынке	Планируется использовать до 2030 года	Согласование стандарта

В базовых системах связи GSM-R и LTE-R работа пользователей допускается только через базовую станцию. Несмотря на то, что такая централизация управления радиосетью представляется весьма полезной, некоторые прикладные задачи на железнодорожном транспорте требуют организации связи по принципу «каждый с каждым». С этой целью в перспективной системе связи LTE-R предполагается реализовать режим LTE ProSe (Proximity Services), который позволит абонентам радиосети LTE-R связываться между собой напрямую.

Следует отметить, что вышеуказанный режим будет доступен только в отдельных рабочих поддиапазонах системы связи LTE-R. В США для этих целей выделен диапазон 788-798 МГц, а в Южной Корее – 703-748 МГц.

Выходная мощность терминалов LTE-R составляет 200 мВт для Европейской зоны и 1 Вт для США. В результате исследовательских испытаний, проведенных в Бонне в 2014 году специалистами компаний Deutsche Telecom (Германия), Ниаwei (Китай) и Qualcomm (США), было установлено, что максимальная дальность связи терминалов LTE-R при работе в режиме «каждый с каждым» составили 550 метров на открытой местности, 350 метров в условиях города при наличии прямой радиовидимости и 170 метров в городских условиях при отсутствии прямой радиовидимости (работа по отраженному сигналу). Поскольку работы в процессе исследовательских испытаний велись на повышенной выходной мощности, проводившие испытания специалисты считают, что максимальная дальность работы терминалов LTE-R в реальной обстановке будет существенно меньше.

Система связи LTE-R является интегрированной. В связи с этим предполагается, что она будет предоставлять услуги голосовой связи и обмена данными для всех имеющихся на железнодорожном транспорте приложений, включая перспективное, так называемое, «Интернет интеллектуальных поездов»). Данное приложение предусматривает организацию подключения к информационной сети Интернет всех железнодорожных приложений, включая приложений пассажиров. По оценке зарубежных специалистов, для

² **MIMO** (англ. Multiple Input Multiple Output) – метод пространственного кодирования сигнала, позволяющий увеличить полосу пропускания канала, в котором передача данных и прием данных осуществляются системами из нескольких антенн.

обслуживания данного приложения потребуется пропускная способность, равная 3,6 ГГц (предполагается, что потребуется обеспечить одновременную работу 130-180 пользователей, половина из которых будет использовать видео с высоким разрешением). В случае организации двустороннего обмена, например, проведения видеоконференции, эти потребности удваиваются до 7,2 ГГц, что не может быть обеспечено перспективной системой связи LTE-R, имеющей пропускную способность 20 МГц. Считается, что такая задача может быть решена только системами связи 5G или mmWave/sub-mmWave, работающими в диапазонах 28 и 300 ГГц соответственно.

Реальные потребности в пропускной способности систем управления движением поездов существенно скромнее и измеряются килогерцами. Однако, обмен данными в таких системах должен быть строго детерминированным, а работа должна быть организована в режиме реального времени, что не обеспечивается даже перспективными системами связи и обмена данными общего пользования.

6.1 Европа

Создание перспективной системы управления движением в Европе ведется в рамках программы СВТС (Communications-based train control), которая предусматривает автоматизацию технологических процессов в трех основных областях: безопасность, управление и контроль движения поезда. Система должна выполнять непрерывное автоматизированное управление поездом на основе сбора текущих данных о его местоположении и параметрах движения, а также постоянного информационного обмена между пунктом диспетчерского управления, поездами и ЖАТ. Программа предусматривает возможность организации движения поездов в автоматическом режиме без участия машиниста в процессе управления поездом на перегонах или на всем участке движения.

Схемы реализации автоматизированного управления движением железнодорожного транспорта, представлены ниже.

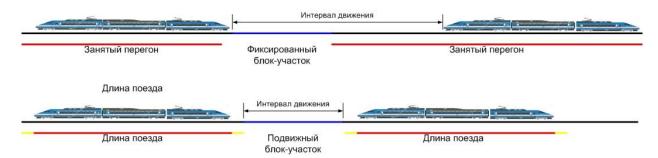


Рис. 1 Схемы реализации управления движением железнодорожного транспорта.

Основной целью реализации программы СВТС является увеличение пропускной способности железных дорог за счет сокращения интервалов движения между идущими в одном направлении (попутными) поездами.

Традиционная система управления движением предполагает разделение маршрута на блок-участки и определение местоположения поезда по привязке к ним. Данные о

местоположении транслируются по рельсовым цепям. Таким образом, интервал попутного следования определяется протяженностью блок участка, как указано на схеме. В зарубежной прессе системы управления, использующий описанный выше принцип, называются системами управления движением с фиксированными блок-участками.

В системе СВТС интервал попутного следования определяется максимальной длиной тормозного пути между двумя попутными поездами, который устанавливается с незначительным резервом, обеспечивающим необходимый уровень безопасности, как указано на схеме. Система автоматизированного управления непрерывно получает информацию о параметрах движения поездов попутного маршрута и устанавливает между ними безопасный интервал движения, протяженность которого меняется в зависимости от реальных условий движения.

В качестве составной части СВТС может рассматриваться проект ERTMS (European Railway Traffic Management System), предполагающий создание единой общеевропейской системы управления устройствами сигнализации, централизации и блокировки, использующей для работы систему связи GSM-R.

Несмотря на то, что проект ERTMS сулит значительные выгоды для железнодорожной отрасли, он пока не получил должного развития. Работы по проекту продолжаются, однако, в качестве основной причины задержек в реализации считается высокая стоимость системы связи GSM-R, неприемлемая для большинства участников данного проекта.

Наиболее далеко в реализации рассматриваемого проекта продвинулись Дания, Бельгия, Нидерланды, Люксембург, Италия, Испания и Австрия. Германия, Франция и ряд других стран Европейского союза в настоящее время разрабатывают планы мероприятий, направленных на ускорение реализации проекта.

- В Дании разработан план реализации проекта до 2023 года в объеме всей железнодорожной сети страны. Общая стоимость реализации проекта оценивается в 2,6 млрд. Евро. Учитывая общую протяженность железных дорог страны, составляющую 3181 км, средняя стоимость оснащения километра пути составит более 815 тыс. Евро.
- В Бельгии реализация проекта ведется с 2009 года только на скоростных линиях от г.Брюссель до границы с Германией и Нидерландами. В 2010 году принято решение о распространении проекта на всю железнодорожную сеть, длина которой составляет 3374 км. Общая стоимость проекта оценивается в 2 млрд. Евро или около 592 тыс. Евро на километр пути.
- В Голландии разработан план оснащения средствами ERTMS всех международных и наиболее сильно загруженных внутренних железнодорожных путей до конца 2030 года. В настоящее время проект реализован на 10% этих путей, а техническими средствами оснащены 20% подвижного состава. Расчетная стоимость завершения реализации проекта составляет 2,3 млрд. Евро, или 884,6 млн. Евро на км.
- В 1999 году в Люксембурге было принято решение о реализации проекта на всей железнодорожной сети общей протяженностью 300 км к концу 2017 года. Общая стоимость только оборудования СЦБ для данного проекта составили 70 млн. Евро или 233 тыс. Евро на километр пути.

Сообщается о том, что значительные финансовые средства истрачены на реализацию проектов по рассматриваемой программе в Италии и Испании, однако конкретные цифры вложений не раскрываются.

В период с 2009 по 2013 год в Австрии средствами ERTMS оснащены около 500 км железнодорожных путей. Затраты только на приобретение оборудования составили 80 млн. Евро или 160 тыс. Евро на километр пути.

Следует отметить, что для связи в направлениях «поезд-станция» и «поезд-поезд» в европейских странах используются самые различные средства, а система связи GSM-R не стала отраслевым стандартом.

В декабре 2017 года австрийская компания Kapsch CarrierCom и венгерская Hungary's MVM OVIT National Power Line завершили четырехлетний проект общей стоимостью 46 млн. Евро по созданию системы связи GSM-R для венгерских железных дорог. Созданная система охватывает участок общей протяженностью 300 км из имеющихся 7800 км, что составляет 3,8%. Таким образом, взвешенная стоимость оснащения системой связи GSM-R километра пути составляет 153,5 тыс. Евро.

Компания Kapsch CarrierCom занимает 52% рынка GSM-R в Европе. По заявлению ее специалистов средствами компании оснащено около 35 тыс. километров железнодорожных путей. Таким образом, общая протяженность оснащенных оборудованием GSM-R железнодорожных путей в Европе может составлять 67 тыс. километров или 25% от общей протяженности (около 260 тыс. километров). Учитывая заявленный срок жизни системы связи GSM-R, можно считать ее дальнейшее активное внедрение маловероятным.

Реализованные в Европе проекты, использующие сети связи стандарта GSM-R, включают в себя магистрали Роттердам — Женева, Неаполь — Гамбург — Стокгольм, Антверпен — Базель — Лион, Севилья — Лион — Турин — Триест — Любляна, Дрезден — Прага — Брно — Вена Будапешт, Дуйсбург — Берлин — Варшава.

(продолжение следует)

ООО «Независимый исследовательский центр перспективных разработок» (НЦПР)

г. Москва, Новинский бульвар, дом 11, офис 302

Тел. +7 (499) 113 26 98 Факс. +7 (499) 113 26 98 Моб. +7 (915) 465 72 89 E-mail: <u>sm@flexlab.ru</u>

http://www.flexlab.ru